RFID世界網(wǎng) >
技術(shù)文章 >
制造 >
正文
一種適用于UHF頻段RFID近場天線的阻抗測量方法
作者:曹亮,楊子江,李秀萍
來源:RFID世界網(wǎng)
日期:2011-04-15 10:49:38
摘要:文章介紹了一種基于同軸線的適用于UHF 頻段RFID 近場天線(NFRA)的阻抗測量方法。首先同軸線直接和NFRA 的平衡輸出端口連接,得到含有NFRA 和同軸線的S 參數(shù);然后通過de-embedding 技術(shù)去除串聯(lián)同軸線的影響,從而得到天線的真實(shí)阻抗。在測量阻抗的基礎(chǔ)上,方便設(shè)計(jì)出將NFRA 匹配至50 歐姆的匹配電路。這種方法避免了由于頻率變化而引起的阻抗仿真誤差,最終的測量結(jié)果和仿真結(jié)果吻合良好,驗(yàn)證了這種方法的準(zhǔn)確性和有效性。
引言
超高頻(UHF)頻段的射頻識(shí)別(RFID)近場讀寫器天線(NFRA)由于其在單品識(shí)別方面應(yīng)用的潛力[1],對(duì)環(huán)境的不敏感性和比HF 天線更高的讀寫速度,正引起多方面的關(guān)注。UHF 頻段的 NFRA 通常采用帶有平衡端口的電大環(huán)結(jié)構(gòu)來實(shí)現(xiàn)。
對(duì)于 NFRA 來說,良好的匹配網(wǎng)絡(luò)是至關(guān)重要的[2,3]。通常UHF 頻段的NFRA 天線都被設(shè)計(jì)成安裝在金屬腔體里來減小環(huán)境對(duì)天線性能的影響,如圖1 所示。但是由于金屬腔體的存在,天線的阻抗會(huì)隨頻率的變化而劇烈變化,這將導(dǎo)致在仿真軟件中得到的阻抗值不夠精確,在此不精確的阻抗基礎(chǔ)上很難設(shè)計(jì)出性能良好的匹配網(wǎng)絡(luò)。通常,我們將NFRA 的設(shè)計(jì)分成3 個(gè)步驟:
1. 首先是環(huán)天線的設(shè)計(jì)和加工;
2. 第二步是環(huán)天線阻抗的測量;
3. 第三部是匹配網(wǎng)絡(luò)的設(shè)計(jì)以及匹配網(wǎng)絡(luò)和環(huán)天線的聯(lián)合仿真在這篇文章中,我們針對(duì)步驟2 設(shè)計(jì)了一種聯(lián)合使用同軸線和de-embedding 技術(shù)來得出天線精確阻抗的方法。在這種方法得到的阻抗的基礎(chǔ)上,來完成匹配網(wǎng)絡(luò)和NFRA 天線的設(shè)計(jì)制作。
一般的,帶有平衡端口的天線,尤其是像圖2 中的電小天線,都需要使用巴倫[4],巴倫的作用是完成平衡端口到非平衡端口的轉(zhuǎn)換。通常會(huì)在同軸線和天線結(jié)構(gòu)之間使用一個(gè)1:1的巴倫來抑制同軸線上共模電流的影響,完成轉(zhuǎn)換。
2 De-embedding 技術(shù)
通過第一節(jié)的方法,可以得出帶有同軸線參數(shù)的NFRA 回波損耗參數(shù)。De-embedding技術(shù)就是用來消除同軸線參數(shù)的影響得到NFRA 真實(shí)阻抗的一種技術(shù)[5,6]。圖6 給出了使用De-embedding 技術(shù)測量的等效電路模型,其中,同軸線被一段長為l 的傳輸線等效
3 測量結(jié)果
圖 7 給出的是沒有添加匹配網(wǎng)絡(luò)時(shí)的S 參數(shù)的測量值和仿真結(jié)果的比較,可以看出測量的結(jié)果和使用HFSS 軟件得到的仿真結(jié)果基本吻合。仿真結(jié)果的回波損耗在
865MHz-868MHz 很小,這將會(huì)導(dǎo)致仿真的阻抗值的不精確??梢钥闯?,在865MHz-868MHz,
仿真得出的回波損耗為0.88dB 而測量得出的回波損耗為1.3dB.
以一款設(shè)計(jì)好的 NFRA 為例,闡述了一種低損耗的阻抗測量方法。通過聯(lián)合測量和de-embedding 技術(shù),得到了天線阻抗的精確值。在得到的測量阻抗的基礎(chǔ)上,設(shè)計(jì)出了性能良好的匹配網(wǎng)絡(luò),匹配后的NFRA 的S 參數(shù)仿真值和測量值吻合良好,證明了這種方法的有效性和精確性。
超高頻(UHF)頻段的射頻識(shí)別(RFID)近場讀寫器天線(NFRA)由于其在單品識(shí)別方面應(yīng)用的潛力[1],對(duì)環(huán)境的不敏感性和比HF 天線更高的讀寫速度,正引起多方面的關(guān)注。UHF 頻段的 NFRA 通常采用帶有平衡端口的電大環(huán)結(jié)構(gòu)來實(shí)現(xiàn)。
對(duì)于 NFRA 來說,良好的匹配網(wǎng)絡(luò)是至關(guān)重要的[2,3]。通常UHF 頻段的NFRA 天線都被設(shè)計(jì)成安裝在金屬腔體里來減小環(huán)境對(duì)天線性能的影響,如圖1 所示。但是由于金屬腔體的存在,天線的阻抗會(huì)隨頻率的變化而劇烈變化,這將導(dǎo)致在仿真軟件中得到的阻抗值不夠精確,在此不精確的阻抗基礎(chǔ)上很難設(shè)計(jì)出性能良好的匹配網(wǎng)絡(luò)。通常,我們將NFRA 的設(shè)計(jì)分成3 個(gè)步驟:
1. 首先是環(huán)天線的設(shè)計(jì)和加工;
2. 第二步是環(huán)天線阻抗的測量;
3. 第三部是匹配網(wǎng)絡(luò)的設(shè)計(jì)以及匹配網(wǎng)絡(luò)和環(huán)天線的聯(lián)合仿真在這篇文章中,我們針對(duì)步驟2 設(shè)計(jì)了一種聯(lián)合使用同軸線和de-embedding 技術(shù)來得出天線精確阻抗的方法。在這種方法得到的阻抗的基礎(chǔ)上,來完成匹配網(wǎng)絡(luò)和NFRA 天線的設(shè)計(jì)制作。
圖 1 UHF RFID 近場讀寫器天線的結(jié)構(gòu)
一般的,帶有平衡端口的天線,尤其是像圖2 中的電小天線,都需要使用巴倫[4],巴倫的作用是完成平衡端口到非平衡端口的轉(zhuǎn)換。通常會(huì)在同軸線和天線結(jié)構(gòu)之間使用一個(gè)1:1的巴倫來抑制同軸線上共模電流的影響,完成轉(zhuǎn)換。
圖 2 帶有平衡端口的電小天線的阻抗測量
圖 3 帶有平衡端口的電大天線的阻抗測量
圖 4 歐洲頻段標(biāo)準(zhǔn)的NFRA 簡化模型
2 De-embedding 技術(shù)
通過第一節(jié)的方法,可以得出帶有同軸線參數(shù)的NFRA 回波損耗參數(shù)。De-embedding技術(shù)就是用來消除同軸線參數(shù)的影響得到NFRA 真實(shí)阻抗的一種技術(shù)[5,6]。圖6 給出了使用De-embedding 技術(shù)測量的等效電路模型,其中,同軸線被一段長為l 的傳輸線等效
3 測量結(jié)果
圖 7 給出的是沒有添加匹配網(wǎng)絡(luò)時(shí)的S 參數(shù)的測量值和仿真結(jié)果的比較,可以看出測量的結(jié)果和使用HFSS 軟件得到的仿真結(jié)果基本吻合。仿真結(jié)果的回波損耗在
865MHz-868MHz 很小,這將會(huì)導(dǎo)致仿真的阻抗值的不精確??梢钥闯?,在865MHz-868MHz,
仿真得出的回波損耗為0.88dB 而測量得出的回波損耗為1.3dB.
圖 7 沒有添加匹配網(wǎng)絡(luò)時(shí)仿真和測量S 參數(shù)的比較
圖8 仿真和測量的阻抗比較(a)電阻值的比較(b)電抗值的比較
圖 9 添加了匹配網(wǎng)絡(luò)后NFRA 的S 參數(shù)的仿真和測量值的比較
以一款設(shè)計(jì)好的 NFRA 為例,闡述了一種低損耗的阻抗測量方法。通過聯(lián)合測量和de-embedding 技術(shù),得到了天線阻抗的精確值。在得到的測量阻抗的基礎(chǔ)上,設(shè)計(jì)出了性能良好的匹配網(wǎng)絡(luò),匹配后的NFRA 的S 參數(shù)仿真值和測量值吻合良好,證明了這種方法的有效性和精確性。