物聯(lián)傳媒 旗下網(wǎng)站
登錄 注冊
阻抗匹配
  • 為什么很多射頻系統(tǒng)或者部件中,很多時(shí)候都是用50歐姆的阻抗(有時(shí)候這個(gè)值甚至就是PCB板的缺省值) ,為什么不是60或者是70歐姆呢?這個(gè)數(shù)值是怎么確定下來的,背后有什么意義?本文為您打開其中的奧秘。
  • 這篇文章盤算了很久,遲遲不敢下筆,對于圓圖的巧奪天工實(shí)在不敢多語。有人用圓圖做阻抗匹配,也有人用圓圖做電路調(diào)試,甚至還有濾波器的調(diào)試。感謝史密斯大神的圓圖,讓射頻設(shè)計(jì)變得簡單——一切逃不開這個(gè)?。
  • RFID標(biāo)簽包含天線和芯片,二者均具有復(fù)數(shù)阻抗。對于無源標(biāo)簽來說,因?yàn)闃?biāo)簽工作所需功耗全部來源于讀寫器發(fā)射的射頻能量,所以天線和芯片之間能否實(shí)現(xiàn)良好的匹配和功率傳輸,直接影響到系統(tǒng)功能的實(shí)現(xiàn),也很大程度上決定了標(biāo)簽的關(guān)鍵性能。
  • 巴倫(Balun)也稱平衡轉(zhuǎn)換器,是微波平衡混頻器、倍頻器、推挽放大器和天線饋電網(wǎng)絡(luò)等平衡電路布局的關(guān)鍵部件,可以說是無線局域網(wǎng)射頻前端電路設(shè)計(jì)的一項(xiàng)關(guān)鍵技術(shù),直接影響著無線通信的性能和質(zhì)量。而差分天線饋線的主要任務(wù)就是高效率的傳輸功率,同時(shí)要保證對稱陣子的平衡饋電。而在超短波頻段,如果采用平行雙導(dǎo)線做其饋電,雖然能保證這種平衡性,但由于其開放式的結(jié)構(gòu),將會產(chǎn)生強(qiáng)烈的反射,為防止電磁能量的漏失和不易受氣候和環(huán)境等因素的影響,饋線通常采用屏蔽式同軸電纜,但如果直接與天線端相連,將會破壞天線本身的對稱性。這種不平衡現(xiàn)象不僅改變了天線的輸入阻抗匹配,而且使天線方向圖發(fā)生畸變。
  • 阻抗控制在硬件設(shè)計(jì)中是一個(gè)比較重要的環(huán)節(jié),IC廠商針對其應(yīng)用一般會向終端產(chǎn)商提供PCB板材質(zhì)、PCB疊層、PCB板厚等一些相關(guān)參考設(shè)計(jì)建議(這些都是跟PCB阻抗控制設(shè)計(jì)息息相關(guān)的),終端廠商在拿到這些資料后,會結(jié)合實(shí)際情況據(jù)此進(jìn)行本地化的設(shè)計(jì)調(diào)整,然后將相關(guān)設(shè)計(jì)資料及要求提供給PCB的生產(chǎn)廠家進(jìn)行PCB生產(chǎn)。
  • 射頻電路板設(shè)計(jì)由于在理論上還有很多不確定性,因此常被形容為一種“黑色藝術(shù)”,但這個(gè)觀點(diǎn)只有部分正確,RF電路板設(shè)計(jì)也有許多可以遵循的準(zhǔn)則和不應(yīng)該被忽視的法則。不過,在實(shí)際設(shè)計(jì)時(shí),真正實(shí)用的技巧是當(dāng)這些準(zhǔn)則和法則因各種設(shè)計(jì)約束而無法準(zhǔn)確地實(shí)施時(shí)如何對它們進(jìn)行折衷處理。當(dāng)然,有許多重要的RF設(shè)計(jì)課題值得討論,包括阻抗和阻抗匹配、絕緣層材料和層疊板以及波長和駐波等,在全面掌握各類設(shè)計(jì)原則前提下的仔細(xì)規(guī)劃是一次性成功設(shè)計(jì)的保證。
  • 匹配電路使用電容器和電感器,但是實(shí)際的電容器和電感器與理想的元件不同,有損耗。表示該損耗的有Q值。Q值越大,表示電容器和電感器的損耗就越小。
  • 本文主要討論阻抗匹配在電子技術(shù)中的應(yīng)用,特別是在無源RFID標(biāo)簽與讀寫器天線端口阻抗匹配中的應(yīng)用。
  • 該文通過仿真研究發(fā)現(xiàn)包裝箱內(nèi)容積和物品的等效介電常數(shù)是影響包裝箱射頻識別(RFID)標(biāo)簽天線的兩大因素,其中物品的介電常數(shù)對RFID標(biāo)簽天線阻抗的影響最大。為了實(shí)現(xiàn)通用的"RFID包裝箱",設(shè)計(jì)了一種對包裝箱內(nèi)物品不敏感的紙基RFID標(biāo)簽天線。標(biāo)簽天線采用懸置微帶多層介質(zhì)結(jié)構(gòu),天線地板面積是輻射單元面積的兩倍。仿真和測試結(jié)果表明:在多種介電常數(shù)的物品包裝箱中,此RFID標(biāo)簽天線均較好地與標(biāo)簽IC阻抗匹配。
  • 介紹了一種基于AS3992芯片的遠(yuǎn)距離RFID讀寫器設(shè)計(jì)。通過AS3992內(nèi)部集成的模擬前端和協(xié)議處理系統(tǒng),配合基帶的MCU控制,實(shí)現(xiàn)了在通信頻率840 MHz~960 MHz內(nèi)發(fā)射功率可調(diào)、天線接口可切換等實(shí)用功能。為了達(dá)到更遠(yuǎn)的傳輸距離,使用了多種阻抗匹配網(wǎng)絡(luò)對微帶線阻抗進(jìn)行微調(diào),且對輸出功率加以檢測,有效防止了盲目增大發(fā)射功率導(dǎo)致接收干擾而影響識別距離的問題。設(shè)計(jì)了4個(gè)天線接口,擴(kuò)展了讀寫器的應(yīng)用距離,同時(shí)減少了單天線的盲區(qū),降低了誤碼率。
  • 有源射頻識別定位系統(tǒng)現(xiàn)已被廣泛應(yīng)用于各種定位場景。針對實(shí)際場景下電子標(biāo)簽小型化的需求,在半徑為14 mm的半圓里,應(yīng)用彎折線實(shí)現(xiàn)了標(biāo)簽PCB天線的小型化設(shè)計(jì),增益達(dá)到-17 dB?;诩傇娐?,天線實(shí)現(xiàn)了433 MHz的諧振特性,且標(biāo)簽天線與標(biāo)簽芯片實(shí)現(xiàn)了50 Ω的阻抗匹配。
  • 本文從電子標(biāo)簽的理論開始,論述了電子標(biāo)簽的設(shè)計(jì)方法,力求在特定的尺寸內(nèi)設(shè)計(jì)出高增益、高效率、高穩(wěn)定性,根據(jù)電磁理論與天線理論,設(shè)計(jì)并且加工出車輛防拆電子標(biāo)簽的實(shí)物。從阻抗匹配問題上,詳細(xì)分析了電子標(biāo)簽的各個(gè)參數(shù)對于電子標(biāo)簽性能的影響。
  • 有源射頻識別定位系統(tǒng)現(xiàn)已被廣泛應(yīng)用于各種定位場景。針對實(shí)際場景下電子標(biāo)簽小型化的需求,在半徑為14 mm的半圓里,應(yīng)用彎折線實(shí)現(xiàn)了標(biāo)簽PCB天線的小型化設(shè)計(jì),增益達(dá)到-17 dB。基于集總元件電路,天線實(shí)現(xiàn)了433 MHz的諧振特性,且標(biāo)簽天線與標(biāo)簽芯片實(shí)現(xiàn)了50 Ω的阻抗匹配。
  • 針對射頻識別(RFID)標(biāo)簽抗金屬性的實(shí)際需求,結(jié)合短路環(huán)偶極子天線輻射能力較強(qiáng)、制造簡單、成本低、防靜電且適宜阻抗匹配等優(yōu)點(diǎn),設(shè)計(jì)了一類短路環(huán)偶極子抗金屬標(biāo)簽。設(shè)計(jì)中將標(biāo)簽天線制作在具有良好輻射特性、成本低廉、材質(zhì)為FR-4的基板上,減小金屬環(huán)境吸收電磁波對天線輻射的干擾,使短路環(huán)偶極子標(biāo)簽具有抗金屬性;同時(shí)在短路環(huán)偶極子天線中引入阻抗臂,通過阻抗臂對短路環(huán)偶極子天線進(jìn)行阻抗匹配及優(yōu)化。經(jīng)過仿真實(shí)驗(yàn)及測試其結(jié)果表明,所設(shè)計(jì)標(biāo)簽具有良好的抗金屬性和阻抗匹配特性。
  • 摘要:提出一種寬帶電子標(biāo)簽天線,該天線適用于多標(biāo)準(zhǔn)超高頻射頻識別(RFID)系統(tǒng),由一個(gè)類偶極子輻射體和一個(gè)饋電環(huán)構(gòu)成。類偶極子輻射體包含兩個(gè)變形彎折偶板子天線,這兩個(gè)變形彎折偶極子天線的長度有差別。它們可以形成兩個(gè)相近的諧振點(diǎn),使得天線的阻抗(特別是虛部)在840~956 MHz的范圍內(nèi)保持平穩(wěn),以獲得與芯片阻抗在較寬頻段內(nèi)的良好的共軛阻抗匹配,從而使天線獲得一個(gè)非常寬的帶寬(840~975 MHz)。該帶寬足以覆蓋全球超高頻RFID頻率范圍,使得標(biāo)簽可以全球通用,大大減少了重復(fù)設(shè)計(jì)工作量,有效降低了成本。最后基于仿真模型,加工了一個(gè)天線實(shí)物,實(shí)物測量結(jié)果與仿真結(jié)果吻合良好。
  • 針對振動能量采集器的輸出功率過低不足以直接驅(qū)動無線傳感器的問題,設(shè)計(jì)了振動自供能無線傳感器的電源管理電路,根據(jù)調(diào)諧和阻抗變換原理對能量采集器進(jìn)行了阻抗匹配,以最大功率對儲能超級電容進(jìn)行充電,對能量存儲和電源管理電路的充放電特性進(jìn)行了理論分析和實(shí)驗(yàn)驗(yàn)證。結(jié)果表明,該電路大幅度提高了采集器的輸出功率和對儲能超級電容充電的效率,當(dāng)0.47 F超級電容電壓達(dá)到0.6 V時(shí),能量瞬間釋放電路控制超級電容瞬間放電,成功驅(qū)動最大功耗為75 mW的無線傳感器工作。
  • 提出了無源RFID (射頻識別) 標(biāo)簽的低成本阻抗匹配網(wǎng)絡(luò)。該設(shè)計(jì)基于復(fù)功率波反射系數(shù)的概念, 修正芯片輸入阻抗, 在片內(nèi)添加阻抗匹配電路。通過變化芯片阻抗和天線共軛匹配及失配間切換, 有效完成信號的調(diào)制反射。
  • 匹配關(guān)乎著系統(tǒng)的性能,使匹配則是使系統(tǒng)的性能達(dá)到約定準(zhǔn)則下的最優(yōu)。其實(shí),阻抗匹配的概念還可擴(kuò)展到整個(gè)電學(xué)之中,包括強(qiáng)電(以電能應(yīng)用為主)與弱電(以信號檢測與處理為主)兩個(gè)大的領(lǐng)域。再進(jìn)一步,如果去掉阻抗的概念單就匹配而言,則其覆蓋的范圍將更為廣闊,比如:在RFID技術(shù)應(yīng)用中,技術(shù)與需求的滿足涉及到匹配的問題等。
  • 采用感應(yīng)耦合技術(shù)設(shè)計(jì)并制作了一款UHF電子標(biāo)簽天線,為了實(shí)現(xiàn)與標(biāo)簽芯片的阻抗匹配,耦合單元采用非均勻彎折技術(shù)。仿真結(jié)果表明,帶寬(VSWR<1.2)為0.82 GHz~1 GHz,完全覆蓋了UHF(0.84 GHz~0.96 GHz)全頻段,且S11<-22 dB,具有較好的諧振深度。通過HFSS建模仿真分析發(fā)現(xiàn)感應(yīng)單元距饋電單元的距離和饋電單元的形狀對天線性能影響與理論分析基本吻合,對寄生耦合加載技術(shù)具有指導(dǎo)意義。
  • 阻抗匹配問題是電子技術(shù)中的一項(xiàng)基本概念,通過匹配可以實(shí)現(xiàn)能量的最優(yōu)傳送,信號的最佳處理??傊?,匹配關(guān)乎著系統(tǒng)的性能,使匹配則是使系統(tǒng)的性能達(dá)到約定準(zhǔn)則下的最優(yōu)。本文主要討論阻抗匹配在電子技術(shù)中的應(yīng)用,特別是在無源RFID標(biāo)簽與讀寫器天線端口阻抗匹配中的應(yīng)用。
  • 該文通過仿真研究發(fā)現(xiàn)包裝箱內(nèi)容積和物品的等效介電常數(shù)是影響包裝箱射頻識別( RFID )標(biāo)簽天線的兩大因素,其中物品的介電常數(shù)對 RFID 標(biāo)簽天線阻抗的影響最大。為了實(shí)現(xiàn)通用的“RFID 包裝箱”,設(shè)計(jì)了一種對包裝箱內(nèi)物品不敏感的紙基 RFID 標(biāo)簽天線。標(biāo)簽天線采用懸置微帶多層介質(zhì)結(jié)構(gòu),天線地板面積是輻射單元面積的兩倍。仿真和測試結(jié)果表明:在多種介電常數(shù)的物品包裝箱中,此 RFID 標(biāo)簽天線均較好地與標(biāo)簽 IC 阻抗匹配。
  • 本文主要討論阻抗匹配在電子技術(shù)中的應(yīng)用,特別是在無源RFID標(biāo)簽與讀寫器天線端口阻抗匹配中的應(yīng)用。
  • 本文設(shè)計(jì)的電子標(biāo)簽結(jié)構(gòu)非常簡單,針對不同芯片的阻抗匹配方便,帶寬達(dá)到77 MHz,在867 MHz和915 MHz處有兩個(gè)諧振頻率,可同時(shí)滿足歐洲和美國的UHF射頻頻段標(biāo)準(zhǔn)。
  • 在某些電路中,希望阻抗匹配能夠?qū)崿F(xiàn)多個(gè)八度音階頻率覆蓋范圍,同時(shí)插損很低。為了幫助阻抗變壓器設(shè)計(jì)人員,本文對阻抗比為1:4的不平衡到不平衡(unun)寬帶阻抗變壓器的設(shè)計(jì)進(jìn)行了探討。這種變壓器在無線通信系統(tǒng)(一般是混合電路、信號合分路器)中很有用,對放大器鏈路的級間耦合也很有益。
  • 射頻識別(RFID)應(yīng)用中的天線設(shè)計(jì)需考慮的最重要因素是低價(jià)位、小剖面和小型化,而為了最大功率傳輸,天線的輸出阻抗必須和其后的芯片的輸入阻抗匹配。本文介紹一種新穎的簡單結(jié)構(gòu)折疊偶極子天線,所需的輸入阻抗能通過選擇合適的幾何參數(shù)輕易獲得,這對設(shè)計(jì)特殊阻抗的天線非常有用。